OpenBCM V1.08-5-g2f4a (Linux)

Packet Radio Mailbox

IZ3LSV

[San Dona' di P. JN]

 Login: GUEST





  
LW1DSE > TECH     07.01.18 14:30l 267 Lines 13522 Bytes #999 (0) @ WW
BID : 1130-LW1DSE
Read: GUEST
Subj: Understanding JFET's
Path: IZ3LSV<I0OJJ<UA6ADV<LU4ECL<LU9DCE<LU1DCB<LW3DBH<LU7DQP
Sent: 180107/1201Z @:LU7DQP.#LAN.BA.ARG.SOAM #:26710 [Lanus Oeste] FBB7.00i
From: LW1DSE@LU7DQP.#LAN.BA.ARG.SOAM
To  : TECH@WW


[¯¯¯ TST HOST 1.43c, UTC diff:5, Local time: Mon Nov 20 18:55:33 2017 ®®®]

                              ÉÍÍÍÍÍÍÍÍÍÍÍÍÍÍ»
                              º *  JFET's  * º
                              ÈÍÍÍÍÍÍÍÍÍÍÍÍÍͼ
                         To be viewed in ASCII CP437

      The junction gate field-effect transistor (JFET or JUGFET) is the
simplest type of field effect transistor. Like other transistors, it can be
used as an electronically-controlled switch. It is also used as a
voltage-controlled resistance. An electric current flows from one connection,
called the source, to a second connection, called the drain. A third
connection, the gate, determines how much current flows. By applying an
increasing negative (for an n-channel JFET) bias voltage to the gate, the
current flow from source to drain can be impeded by pinching off the channel,
in effect switching off the transistor.

Contents:

1) Structure
2) Function
3) Schematic symbols
4) Comparison with other transistors
5) Uses and examples

1) Structure
                                  o Drain
                                  ³
                           ÚÄÄÄÂÄÄÁÄÄÂÄÄÄ¿         Fig 1: An internal view
                           ³   ÀÄÄÄÄÄÙ   ³                of an imaginary
                           ³             ³                JFET.
                           ³             ³
                           ±±±±±±±±±±±±±±±ÄÄo Gate
                           ³             ³
                           ³             ³
                           ³   ÚÄÄÄÄÄ¿   ³
                           ÀÄÄÄÁÄÄÂÄÄÁÄÄÄÙ
                                  ³
                                  o Source

         The JFET consists of a long channel of semiconductor material. This
material is doped so that it contains an abundance of positive charge
carriers (p-type), or of negative charge carriers (n-type). There is a
contact at each end; these are the source and drain. The third control
terminal, the gate, surrounds the channel, and is doped opposite to the
doping-type of the channel, forming a p-n junction at the interface of the
two types of the material. Terminals to connect with the outside are usually
made Ohmic.

2)Function

      The operation of a JFET is analogous to a garden hose. The flow of
water through a garden hose can be controlled by squeezing it and reducing
its cross section; the flow of electric charge through a JFET is controlled
by constricting the cross section of the current-carrying channel.

3) Schematic symbols

      Sometimes the JFET gate is drawn in the middle of the channel instead
of at the drain/source electrode as in these examples. This symmetric
variation is hinting that the channel is indeed symmetric in the sense that
drain and source are interchangeable physical terminals. So this symbol
variation should be used only for JFETs where drain and source indeed are
interchangeable, which isn't true for all JFETs.


                    Drain                               D
                   ³                                   ³
                ÇÄÄÙ   N channel                    ÇÄÄÙ    P channel
                º                                   º
        Gate ÄÄ>ÇÄÄ¿                          G  ÄÄ<ÇÄÄ¿
                   ³                                   ³
                    Source                              S

                   Fig. 2: JFET N & P channel schematics.

                    D                                   D
                   ³                                   ³
                ÇÄÄÙ   N channel                    ÇÄÄÙ    P channel
             ÄÄ>º                             G  ÄÄ<º
         Gate   ÇÄÄ¿                                ÇÄÄ¿
                   ³                                   ³
                    S                                   S

                     Fig 3: alternate schematic drawings

      Traditionally, the US style of the symbol was drawn with the whole
component inside a circle, although this has been simplified in favor of the
European style to draw it without a circle.

      In every case the arrow head indicates the polarity of the P-N-junction
of the gate in relationship to the channel. (As in a diode, the arrow points
from P to N, indicating the direction of current flow when forward-biased. A
mnemonic for remembering the N-channel device is that the arrow "points iN".)

      In order to pinch off the channel, one must produce a certain voltage
in reverse direction (VGS) of that junction. The precise value of this pinch
off voltage varies with individual JFETs, even with JFETs of the same type,
typical values ranging between 0.5 to 10 V.

      The appropriate voltage bias can be remembered easily, since the
n-channel device requires a negative gate-source voltage (VGS) to switch off
the JFET, while the p-channel device requires a positive gate-source voltage
(VGS) to switch off the JFET.

      Examples of such devices are: MPF102 (Motorola), BF245 (Philips),
2N3819 (Texas Instruments)(singles) and 2N3858 dual JFET from National
Semiconductor. In the japanese nomenclature, 2SKxxx means a NJFET and 2SJxxx
a P device; 2SK19 from Toshiba. US manufactures don't distinguishes the
channel polarity in the part number.

4)Comparison with other transistors:

      The JFET gate presents a small current load which is the reverse
leakage of the gate-to-channel junction. The MOSFET has the advantage of
extremely low gate current (measured in picoamperes) because of the
insulating oxide between the gate and channel. However, compared to the base
current of a bipolar junction transistor the JFET gate current is much lower,
and the JFET has higher transconductance than the MOSFET. Therefore JFETs are
used to advantage in some low-noise, high input-impedance op-amps (i.e.: ST's
series of operational amps: TL081 single, TL082 dual and TL084 quad) and
sometimes used in switching applications.

      The JFET had been predicted as early as 1925 by Julius Lilienfeld, and
the theory of operation of the device was sufficiently well known by the mid
30's for a patent to be issued for it. However, technology at the time wasn't
sufficiently advanced to produce doped crystals with enough precision for the
effect to be seen until many years later. In 1947, researchers John Bardeen,
Walter Houser Brattain, and William Shockley were attempting to construct a
JFET when they discovered the bipolar junction transistor when the gate fused.
The first practical JFETs were thus constructed many years after the first
when junction transistors, in spite of having been invented much earlier.

5) Uses and examples:

      A common-source (often abbreviated to CS) amplifier is one of the three
possible amplifier circuit configurations that use a single field effect
transistor (FET) as the active device. The name derives from the fact that
the FET's source terminal is connected to neither the input nor the output
path and hence is 'common'.

      The CS amplifier is conceptually a voltage amplifier. The input voltage
modulates the amount of current flowing through the FET, changing the voltage
across the output resistance according to Ohm's law. Alternatively, the CS
amplifier can be treated as a transconductance amplifier, with the input
voltage modulating the current going to the load. However, the FET device's
output resistance isn't typically low enough for a decent voltage amplifier,
or high enough for a reasonable transconductance amplifier. Another major
drawback is the amplifier's limited high-frequency response. Therefore, in
practice the output is routed through a common drain (CD) or common gate (CG)
stage, which have more favorable output and frequency characteristics. Hybrid
circuit arrangements are possible; an example is the cascode, which (in its
FET incarnation) is a consolidated CS-CG amplifier.

                   ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
                   ³                                   ³
                   ± Rd 10Kê                           ³ +
                   ±                                 ÄÄÁÄÄ
                   ³          ³³ Cd 1 æF              ÜÜÜ   VDD
                   ÃÄÄÄÄÄÄÄÄÄÄ´ÃÄÄÄÄ¿                  ³
         Cg        ³          ³³    ³                  ³    12V
      ³³.1 æF   ÇÄÄÙ                ³                  ³
  oÄÄÄ´ÃÄÄÄÂÄÄÄ>º    +  -           ³                  ³
      ³³   ³    ÇÄÄÂÄÄ´ÃÄ¿ 100æF    o                  ³
           ±       ³     ³                             ³    Fig 4: Example of
 In  Rg    ±       ± Rs  ³          Out                ³    common source
     1Mê   ³       ± 1Kê ³                             ³    amplifier.
           ³       ³     ³          o                  ³
  oÄÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÁÄÄÄÄÄÁÄÄÄÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´
                                                      ÄÁÄ  GND (common)
                                                      ///
           ÚÄÄÄÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄÄÄo + Vdd
           ³           ³
           ±           ± Rd
           ± R1        ±
           ³           ³          ³³Cd
           ³           ÃÄÄÄÄÄÄÄÄÄÄ´ÃÄÄÄÄo
   Cbp³³   ³ Vdd/2  ÇÄÄÙ  J2      ³³     OutPut
   ÚÄÄ´ÃÄÄÄÅÄÄÄÄÄÄÄ>º     N Type (Common gate amplifier)
   Á  ³³   ³        ÇÄÄ¿
  GND      ±           ³
           ± R1        ³
           ³           ³
          ÄÁÄ GND      ³
          ///          ³
                       ³
        Cg³³        ÇÄÄÙ  J1 N Type (Common source amplifier)
      oÄÄÄ´ÃÄÄÄÂÄÄÄ>º     ³³
          ³³   ³    ÇÄÄÂÄÄ´ÃÄ¿
             Rg±       ³  ³³ ³           Fig 5: Example of
 InPut         ±       ± Rs  ³                  JFET cascode
               ³       ± 1Kê ³                  amplifier.
               ³       ³     ³
      oÄÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÅÄÄÄÄÄÁÄÄ         Cbp: By Pass at working frequency.
                      ÄÁÄ GND
                      ///


                    ³³Cbp
                ÚÄÄÄ´ÃÄÄÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄo + Vdd
           GND ÄÁÄ  ³³   ³               ³
               ///       ³               Û RFC
    Xtal              ÇÄÄÙJ1             Û
     ÚÄÄÄÄÂÄÄÄÄÂÄÄÄÄÄ>º                  Û     ³³Cbp  Out
     ³    ³    ³      ÇÄÄ¿               ÃÄÄÄÄÄ´ÃÄÄo
     Á Rg ³   ÄÁÄ C1     ³  C3           ³     ³³     Fig 6: Example of
    ²²²   ±   ÄÂÄ        ³ ³³         ÇÄÄÙ            JFET Xtal Oscillator
     Â    ±    ÃÄÄÄÄÄÄÄÄÄÅÄ´ÃÄÄÄÂÄÄÄÄ>º   J2          and buffer stage.
     ³    ±   ÄÁÄ        Û ³³   ³     ÇÄÄ¿
     ³/   ³   ÄÂÄ C2     Û   RFC± Rg     ³            Note: Xtal may be
    ÄÁÄ   ³    ³         Û      ±        ³            replaced by a series
    ÄÂÄ   ³    ³         Û      ³        ³            replaced by a series
    /ÀÄÄÄÄÁÄÄÄÄÅÄÄÄÄÄÄÄÄÄÁÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄÄo  resonant tank circuit
              ÄÁÄ GND                                 to make a JFET Clapp
    Frq. Adj. ///                                     oscillator circuit.

                       RFC: Choque coil (high Xl at working frequency)
                            Cbp: By Pass at working frequency


                             ÚÄÄÄÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄo +Vdd
                             ³           ³
                             ³           ³
                        Rd1  ±           ± Rd2
                             ±           ±
                             ³           ³
                             ÃÄÄÄÄÄÄÄÄÄÄÄ)ÄÄÄÄÄÄÄÄÄo Vo1
                          ÇÄÄÙ           ³
       oÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄ>º   J1         ³
     Vi1       ±          ÇÄÄ¿           ³
               ± Rg1         ³           ÃÄÄÄÄÄÄÄÄÄo Vo2
              ÄÁÄ            ³           ³
              ///            ³           ³
                             ³        ÇÄÄÙ
       oÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄ)ÄÄÄÄÄÄÄ>º    J2
     Vi2       ±             ³        ÇÄÄ¿           Fig 7: JFET differetial
               ± Rg2         ³           ³           amplifier with JFET
              ÄÁÄ            ÃÄÄÄÄÄÄÄÄÄÄÄÙ           current source at the
              ///            ³                       common sources junction.
                          ÇÄÄÙ
                      ÚÄÄ>º    J2
                      ³   ÇÄÄ¿                 (Vo1-Vo2)= - Av (Vi1-Vi2)
                      ³      ³                  Av: Voltage gain
                      ³      ±  Rs3           - indicates polarity inversion
                      ³      ±                  at output with respect to
                      ³      ³                  the input.
                      ÀÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄo -Vss

ÉÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ»
º Compilled from Wikipedia.com . Translatted and ASCII schematics by LW1DSE  º
º  Osvaldo F. Zappacosta. Barrio Garay, Almirante Brown, Bs As, Argentina.   º
º      Made with MSDOS 7.10's Text Editor (edit.com) in my AMD's 80486.      º
º                            December 01, 2007                               º
ÈÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍͼ

ÉÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ» 
     
º Osvaldo F. Zappacosta. Barrio Garay (GF05tg) Alte. Brown, Bs As, Argentina.º
º Mother UMC æPC:AMD486@120MHz 32MbRAM HD SCSI 8.4Gb MSDOS 7.10 TSTHOST1.43C º
º               6 celdas 2V 150AH. 18 paneles solares 10W.                   º
º                  lw1dse@yahoo.com ; lw1dse@gmail.com                       º
ÈÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍͼ


Read previous mail | Read next mail


 11.01.2025 09:49:04lGo back Go up