OpenBCM V1.08-5-g2f4a (Linux)

Packet Radio Mailbox

IZ3LSV

[San Dona' di P. JN]

 Login: GUEST





  
G8MNY  > TECH     27.01.17 12:03l 290 Lines 14675 Bytes #999 (0) @ WW
BID : 32835_GB7CIP
Read: GUEST
Subj: Spectrum Analyser mods 88-89/2
Path: IZ3LSV<ED1ZAC<GB7CIP
Sent: 170127/1048Z @:GB7CIP.#32.GBR.EURO #:32835 [Caterham Surrey GBR]
From: G8MNY@GB7CIP.#32.GBR.EURO
To  : TECH@WW

By G8MNY                                 (Updated Mar 15)
(8 Bit ASCII graphics use code page 437 or 850, Terminal Font)

2nd IF FILTER
11/ The 2nd mixer's output has in internal pull up of 1k5 to so get 330ê source
impedance for the filter a 430ê on pin 4 determines the 2nd IF filter source
impedance. (This is not applicable to the Mark 2 with narrow filter option)

³     .-Ä-Ä-.            ³      .--.          If the filters are deliberately
³    Þ       Ý           ³     /    \         mismatched then they can give
³    Ý COMMS Þ           ³    |      |        a better analyser friendly
³   |  Filter |          ³   |        |       "rounded peak response" rather
³_./   50kHz   \._       ³_./          \._    than the flat topped ringy
ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ    ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ  edges of communication filters.
 Correctly terminated      Mis Terminated
    RINGY FILTER        sweep friendly filter

To find the best values for your filters use small 1k presets to source &
terminate the filters to see this effect on the display of a carrier, find the
optimum value for best IF shape & then replace the presets with nearest fixed
values.
               +12VÄÂÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄ¿
                   === u1 ³   IF    ³
          +6V      _³_    ³   AMP  470ê
2nd  Pin 8<Ä´           220k   ÚÄÄÄÄ´
Mixer      430ê           ³  ³/     ³
602  Pin 4>ÄÁÄ¿   ÚÄÄÄÄÄÄÄÁÄÄ´ T1   ³   ÚÄÄÄÄ¿   ÚÄÄÄÂÄÄÄÄÄÄ>Pin 7  To
     Pin     _³_ _³_    BFX90³\e   _³_ _³_  _³_ _³_ 330ê            MC3356
      3      ÚÄÄÄÄÄ¿           ³   ÚÄÄÄÄÄ¿  ÚÄÄÄÄÄ¿  ÃÄÄÄÄÄÄ>Pin 9  Log
      ³ 50kHzÀÄÄÄÄÄÙ         100ê  ÀÄÄÄÄÄÙ  ÀÄÄÄÄÄÙ  ÀÄ´ÃÄÂÄ>Pin 8  Detector
      ³ 10.7 ÄÄÄÂÄÄÄ        Preset ÄÄÄÂÄÄÄ  ÄÄÄÂÄÄÄ      ===
    ÄÄÁÄÄÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄÄÄÄÄÄÄÁÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄÄÄÁÄ>Pin 19
            1st filter             2nd     Wide filter

Adjust the 100ê gain preset for the optimum noise floor that can just be seen.

12/ Adding an inter filter buffer stage using a single transistor T1 adds some
preset gain for setting the overall noise floor of the analyser, as well as
matching into a 2nd filter. This filter is terminated by the input load on the
detector 330ê. Two 50kHz 10.7MHz ceramic filters provide a reasonable
compromise of selectivity for sweeping 0-80MHz @ 50Hz without too much ringing
distorting & loss of the peaks levels (up to 10dB) while still looking good in
close "zoomed in" sweeps. However a 3rd filter was put in tandem with the 2nd
filter to clean up poor filter skirt rejection of my particular narrow filters
@ 7MHz!

LOG DETECTOR
13/ The detector (S meter output) uses 5 IF amps & detectors (with limiters) to
obtain log response & it is quite accurate for over 40dB range. But ignoring
the slight overload in the mixers this range can be extended on the display, by
increasing the gain calibration preset (1k preset now 2k2), & then adding a non
linear correction attenuator with diodes D1 (Schotky/Ge) & D2 (Si) to give 30%
stretch @ the highest & lowest levels where the detector has lower sensitivity.

                      Ge                  1.0 ´Output from        _.-'
MC3356  pin     ÚÄ´>ÃÄ¿          Y to      .9 ´Detector        .-'
LOG     14>ÄÂÄÄÄ´     ÃÄÄÄÄÂÄÄÄÄ> scope    .8 ´              .'
DETECTOR    ³   ÃÄ10kÄ´    ³               .7 ´            .'
         2n2³  680ê   ³    ³ T2            .6 ´          .'    S
     Video ===  ³    22k    \³  Timebase   .5 ´        .'  Correction
     Filter ³  2k2   _³_     ÃÄ<Sync/      .4 ´    _.-'
            ³  Y CAL \_/Si e/³  Blanking   .3 ´_.-'
Pin 11>ÄÄ´ÃÄÁÄÄÄÁÄÄÂÄÄÁÄÄÄÄÁÄÄÄÄÄÄÄÄÄ      .2 ´
Lim out  1n       _³_                      .1 ´                        Display
is RF                                      0v ÅÄÂÄÄÂÄÄÂÄÄÂÄÄÂÄÄÂÄÄÂÄÄÂ>output
grounded                                        0  10 20 30 40 50 60 70 dB

With this correction you can get good display linearity to 70dB. Easily tested
with input attenuator & a signal generator to see equal height 10dB steps.

14/ The sensitivity is set by the Y Calibration preset to give 100mV/10dB. A
2.2nF capacitor limits the Y video bandwidth to about 10kHz (50%), but having
hardly any degradation of pulse height at the widest sweep range.

VIDEO FILTER
15/ For some applications lower video bandwidth is needed to reduce noise, I
added a 33nF switched across the Y output incorporated with the above mod, to
give about 1kHz Y bandwidth (50%).

Ä10kÄÄÄÂÄ>Y to
       ³  scope
  o\Ä´ÃÙ
 _³_ 33nF

It needs to be switchable as it causes the output to lie about the fine detail
with wide sweeps.

POWER SUPPLY
16/ The hot +12V regulator has been heatsinked, & the + rail input smoothing
capacitor increased from 680uF to 2m2. Transformer & rectifier pulse currents
wiring & layout have been kept away from the regulators as far as possible to
reduce supply hum ripple pickup.
                                      Heatsink
                  4x 1N4001     +17V ÚÄÄÄÄ¿
                ÚÄÄÄÂÄ´>ÃÄÂÄÄÄÄÄÄÄÂÄÄ´7812ÃÄÂÄÄÄÄÄÄ> +12V    Much larger output
 L >Äo/ oÄÂÄ¿   ³  _³_   _³_  2m2 ³+ ÀÄÂÄÄÙ+³330u    200mA   caps have been
        100k )º(   /_\   /_\  25v===   ³   ===16v            used to reduce
240V      ³  )º(___ ³ ___ ³ ______³____³____³_____\ 0V       the last remnants
        NEON )º(    ³     ³  680u³+     ³    ³+   /          of hum & noise.
          ³  )º(    ³     ³  25v===     ³   ===330u          This is most
 N >ÄÄÄÄÄÄÁÄÙ ³ ³   ÀÄÄÄÄÄ)ÄÄÄÄÄÄ´    ÚÄÁÄÄ¿ ³ 16v           important
              ³ ÀÄÄÄÄÄÄÄÄÂÁÄÄ´<ÃÄÁÄÄÄÄ´7912ÃÄÁÄÄÄÄÄ> -12V    for close in
 E >ÄÄÂÄÄÄÄÄÄÄÙ 14-0-14  ³       -19V ÀÄÄÄÄÙ          20mA   stability.
      ÀÄ> 0V    0.3A     ÀÄ>50Hz

The mains transformer has also been varnished to reduce acoustic hum & an outer
copper short circuit added to reduce magnetic fields that can affect the 2nd
osc stability. The other 2 low power regulators +6V for 2nd osc, & +5V for Log
amp, are placed near those circuits for best noise/voltage error rejection.

17/ A 50Hz synchronisation line is provided for ramp timebase locking. This is
important for close "zoomed in" stability of the sweep.

RAMP GENERATOR
In the simple mark 1 design, it uses 4 operational amplifiers IC3 (e.g. TL084)
that run on the ñ12V. The original circuit produced a symmetrical 500Hz ramp up
& down oscillator which was far too fast for wide sweeps & half the time was
wasted during the flyback. Mod 18/ solves this.

18/ IC3a forms a 50Hz ramp oscillator with the 100k & 12k in parallel during
flyback due to the diode D3, & a 1uF timing capacitor to give close to mains
frequency. Then a small injection of 50Hz from the mains transformer alters the
flyback time (D3, 12k & 1uF) to cause lock up to mains frequency. This method
ensures constant sweep MHz rate & the mains lock ensure a stable display even
with some sweep hum present when zoomed close in.
                                              Ä¿ÚÄÄÄ¿ 
         50Hz 12VAC >ÄÄ100kÄÂÄ12kÄÂÄÄÂÄÄÄÄÄÄÄ¿ ÀÙ   ÀÙ       _
         from bridge       _³_    ³ 100k     ³     Ú¿      _³ \____
MAINS                   D3 /_\  100k ³       ³    ÄÙÀÄÄ
LOCKED            /ÃÄÄÄÄÄÄÄÄ´     ³  ÃÄÄ´\   ³ -      ÚÄÄ´>ÃÄÂÄ22kÄ>Y Blanking
50Hz <ÄÄÄÄÄÂÄÄÄÄ<'ñ³IC3b    ³     ³  ³  ³ñ`>ÄÁÄÄ´\    ³      ³      Transistor
RAMP,.     ³ n47 `\ÃÄÂÄÄ¿   ÃÄÄÄÄÄÁÄÄ)ÄÄ´/'    +³ `>ÄÄÁÄÄ2k2Ä´         T2
  ,/ ³     ÃÄ´ÃÄÄÄÄÄÄ´  ³   ³        ³ IC3a  ÚÄÄ´/'          ³
,/   ³,/   ÀÄÄÄ10kÄÄÄÙ 1k2 ===1u    10k      ³   IC3d     u1===
     '  ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÁÄÄÄÁÄÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÁÄÄÄ
          Buffer x9   ,/'³,/'³   50Hz Ramp Osc     Sweep Settle Delay

19/ IC3d buffers &
inverts the banking          dB  0Hz                /|\
pulse & it is               +70´  ³        |         |     + 0.9V
lengthened with CR          +60´  ³      Sweep       |
& a diode before it         +50´  ³      Centre     100mV
drives blanking             +40´  ³        |        /10dB
transistor T2. This         +30´  º                  |
eliminates any sweep        +20´  º                  |
folding due to VHF osc      +10´  º   Noise Floor   \|/
sweep settling delay          0´ ÚßÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿     + 0.2V
with RF sweep filtering     SYNCS³     SWEEP       ^ ³
to be masked. And the         ÄÄÄÙ                 | ÀÄÄÄÙ - 0V
banking also gives          Scope^               Scope
the scope a 0V sync        Trigger              Flyback
pulse to lock to.                < - - - - 20mS - - - - ->

20/ IC3c is the sweep correction amplifier, this amplifies the selected sweep
width together with the centre frequency DC, then corrects for VHF oscillator
varicap frequency control non linearity by pre-distorting the ramp waveform
with 5 gain changes using 4 diodes, D4-D6 & ZD2 zener.

            -12V>Ä3k3ÄÄÄÂÄÄ2k2ÄÄ<+12V    MHz Tune
10 Turn                390k              240´Ramp                          _
 Tune<Ä68k¿             R1               230´Input                 _..--''~
  Pot     ÃÄÄ27kÄÄÂÄ´<ÃÄ´                220´     Five       _.--'~    R4
          ³      27k   _³_               210´    Slopes  _.-'  R3
Ramp      ³ ÚÄ´\  ³    /_\    To VHF     200´         .-'
   ³      ³ ³ ³ñ`>ÁÄÄÄÄÄ)ÄÄÄÄÄ>Osc       190´      .-' R2
Sweep     ÃÄ)Ä´/'IC3c   ³     Varicap    180´    .'
  Pot<Ä68kÙ ³           ³ 2.7V           170´  .' R1
  10k       ³           ÃÄ´>ÃÄÄÂÄ´<ÃÄ¿   160´ ;
   ³        ³       R2 47k  Ù 15k   4k7  150´:    Varicap Volts (ref to +12V)
 ÄÄÁÄÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄÄÄÄÁÄÄÄÄÄÄÁÄÄÄÄÄÁ   140ÅÄÄÄÂÄÄÄÂÄÄÄÂÄÄÄÂÄÄÄÂÄÄÄÂÄÄÄÂÄÄÄÂ
                              R3    R4     +12  9   6   3   0  -3  -6  -9  -12

The R1-4 values used for the gain corrections are set up using the marker to
give even spacings on the display.

  0Hz
   ³
   ³ .    Even spaced 5MHz markers
   ³ ³ . ³   |   |   .   .   .
   º ³ ³ ³ ³ ³ | ³ | ³ | ³ | ³ | ³ | ³
   º ³ ³ ³ ³ ³ ³ ³ ³ ³ ³ ³ ³ ³ ³ ³ ³ ³ 90
  _º_³_³_³_³_³_³_³_³_³_³_³_³_³_³_³_³_³_³_
     5  15  25  35  45  55  65  75  85   MHz

FREQUENCY CONTROL
21/ 
+12VÄÄÄÄÄÄÄÄÄÄÄ¿
              FREQ<ÄÄÄÄÄÄÄÄÂÄÄ>Tuning    The multiturn vernier
            10k POT        ³      DC     centre frequency control
               ³          === 22uF       has a 22uF bipolar
           80MHz CAL       ³Bipolar!     capacitor to ground
           5k PRESET      _³_            (or elect to +12V near the ICs)
-12VÄÄ´<ÃÄÄÄÄÄÄÙ         ////            to remove any pot scratchiness.
     Thermal
   compensation.

22/ A multiturn preset pot on the positive rail of the control is added to
calibrate 80MHz position on the vernier scale. A diode in series gives some
temperature drift compensation. Together with the correction circuit of IC3c
fairly accurate frequency readouts are possible on the vernier scale. 0-90MHz.

I N  U S E
IMAGES
Other than the 0 Hz line, there is only one unwanted image @ 10.7MHz, it is at
a low level & its appearance depends on the IF gain setting. It is due to the
second IF detector being in the same IC as the RF input section!

 dB  0Hz
+70´ ³
+60´ ³                                 VHF images are all well
+50´ ³                                 down due to the VHF LPF
+40´ º                                 & the chip sensitivity
+30´ º                                 cutting off as well as
+20´ º                                 the input filter & double
+10´ º                         Noise   screened box.
  0ÅÄßÄÄÄÄÄÄ^ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ Floor
          10.7MHz

OVERLOADS
These can be seen as higher levels of harmonics increasing at a greater rate
than the fundamental. e.g. a 10dB increase in level, causes the fundamental to
increase by 10dB (1 division), but the 2nd harmonic increases by 15 to 30dB!

dB   0Hz                            dB  0Hz
+70´³                               +70´³      Fo
+60´³      Fo                       +60´³   ^  ³
+50´³  /|\ ³                        +50´³   |  ³     Mixer
+40´³   |  ³                        +40´³   |  ³   Generated
+30´º <60dB³                        +30´º >60dB³   Harmonics
+20´º   |  º                        +20³º   |  º     2Fo
+10´º   v  º    2Fo   3Fo  Noise    +10´º   v  º      ³       3Fo
  0ÁßÄÄÄÄÄÄÐÄÄÄÄÄÄÄÄÄÄÄÄÄÄ Floor      0´ßÄÄÄÄÄÄßÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄÁÄÄ
     Filtered Osc test                     Filtered Osc test
                                          OVER LOADING 1st MIXER

They can also be detected as unwanted sidebands around the markers too.

 dB                                    dB
+70´     Signal                       +70´
+60´       ³                          +60´
+50´       ³                          +50´
+40´       ³ Marker                   +40´
+30´       ³    ³                     +30´  Base Noise Floor
+20´ SÄM   º    ³   S+M               +20³     Raised     __
+10´ Mix   º    ³   Mix               +10´      __..--""~~
  0´ÄÄÁÄÄÄÄßÄÄÄÄÐÄÄÄÄÁÄÄÄÄ              0´ÄÄ""~~
   POSSIBLY OVER LOADING MIXER             GROSS OVERLOAD

Other signs of overload is a raised noise floor.

CLOSE IN OVERLOADS
These are much the same as above, but occur when the 2nd mixer sees 2 large
signals passing through the 1st IF filter. So if the narrowing of that filter
has been done, strong signals will need to be closer than 1 MHz to suffer this
problem. (e.g. using the analyser closer than 1 MHz from 0 Hz reduces dynamic
range due to the increased noise floor from its' own 2 oscillators)

FILTER NOISE SIDEBANDS
 dB                                     With large carriers are looked
+70´                                    at close in, you will see noise
+60´              /~\                   sidebands (phase noise) added
+50´             ³   ³                  to the filter response, this is
+40´             Ý   Þ                  normal for this sort of analyser.
+30´            Þ     Ý
+20´ Sideband  ÜÝ     ÞÜ  Sideband      Lower frequency Y display filtering
+10´ Noise  _ÜÛß       ßÛÜ_  Noise      can mask this, but at the cost of
  0´ÄÄÄÄÄͼßßß  <50kHz>  ßßßÈÍÄÄÄÄÄÄÄ   peak pulse height accuracy.

SWEEP NOISE
Some of this phase noise can be noisy sweep amps, as the S/N needed on the VHF
osc will be >120dB, e.g. 24V max sweep & < 24uV of noise! I have used active
sweep filtering on some analysers to overcome this failing where the sweep rate
is low & a CR filter after the last opamp does reduce the HF noise sent to the
oscillator.

         ÚÄ´>ÃÄ¿                The diode direction (depends on circuit)
    ³\   ³     ³                ensures the flyback charges up the cap
 OP ³ `>ÄÁÄÄRÄÄÁÂÄÄÄÄ>VHF OSC   voltage quickly, so there is little cramping
amp ³/'        === C            at the start of the sweep.
              ÄÄÁÄÄ             e.g. Xc = R (-3dB) @ 10x sweep freq.



Why don't U send an interesting bul?

73 de John G8MNY @ GB7CIP


Read previous mail | Read next mail


 10.01.2025 18:34:45lGo back Go up