OpenBCM V1.08-5-g2f4a (Linux)

Packet Radio Mailbox

IZ3LSV

[San Dona' di P. JN]

 Login: GUEST





  
G8MNY  > TECH     10.03.08 09:00l 83 Lines 3105 Bytes #999 (0) @ WW
BID : 49598_GB7CIP
Read: GUEST
Subj: An AF amplifier stage
Path: IZ3LSV<IW2OHX<OE6XPE<DB0RES<IK2XDE<ON4HU<ON0BEL<GB7CIP
Sent: 080310/0018Z @:GB7CIP.#32.GBR.EU #:49598 [Caterham] $:49598_GB7CIP
From: G8MNY@GB7CIP.#32.GBR.EU
To  : TECH@WW

By G8MNY                                (Updated Dec 04)
(8 Bit ASCII Graphics use code page 437 or 850)
This simple amplifier circuit is easy for calculations.

+9V ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄÄÄ            _
                   Rc                    /' `\
            ÚÄÄÄÄÄÄ´   Cout             ³     ³
           Rb      ÃÄÄÄÄ´ÃÄÄÄÄ ³       ³       ³
 /'\,/      ³    ³/             ³     ³ 
I/P ÄÄÄ´ÃÄÄÄÁÄÄÄÄ´ NPN           \._./
       Cin       ³\e
                   ³  /'\,/
                   Re
 0VÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄÄÄÄ

BASE BIAS R = Hfe x (Rc+Re) Approx
     To get « the DC swing on the O/P. This is because we want the same voltage
     CÄE (almost the same as across Rb) as across the total load R of Rc+Re.

GAIN = Rc/Re approx (Rc may be lower due to external load).
     With high Hfe then Ie approx = Ic, so the emitter NFB Re controls the
     collector current making the voltage gain just the voltage drop ratio of
     Rc/Re. Assuming no external loads. For high gain applications Re includes
     the internal emitter R of the transistor (typically a few ohms).

O/P Z = XCout + (Rc // ((GÄ1) x Rb))
     This is the added components, including the apparent fraction of the bias
     Rb with load current in it.
     "//" means in parallel, many of the paralleled terms are insignificant.
     Technically the amount that (G-1)x Rb component that affects the O/P Z
     it will also depend the I/P source Z.
 
I/P Z = XCin + ((Hfe x Re) // (Rb/(G+1)))
     This is the added components, including the apparent fraction of the bias
     Rb with input current in it.
     "//" means in parallel, many of the paralleled terms are insignificant.

LF Roll off
     Cin & Cout affect the LF response. Basically each one will give Ä3dB &
     6dB/Octave roll off when Xc equals the source + load Zs.

HF Response
     Intrinsically limited by the transistor's FT when the Hfe becomes 1, &
     component layout (inter capacitance) causing Miller HF N.F.B. effects
     between O/P & I/P.

HF Compensation
     HF loss can be compensated for by putting a suitable C across Re to give
     +3dB boost were Xc=Re, e.g. where the measure drop is -3dB. The 6dB/Octave
     lift after that should flatten the amp losses out. The input Z will be
     reduced at HF though. Not often used!

EXAMPLE

+12V ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄÄ
                  1kê
            ÚÄÄÄÄÄÄ´   + Cout
          100kê    ÃÄÄÄÄ´ÃÄÄÄÄ Output
         +  ³    ³/    0.5uF       ³
I/P ÄÄÄ´ÃÄÄÄÁÄÄÄÄ´ Hfe=100       10K Load
      Cin     NPN³\e               ³
      1uF          ³               ³
                  100ê             ³
 0V ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

So in the above example Collector should be around +6V
Gain about 9 times
O/P Z about 900ê + XCout
I/P Z about 5kê  + XCin

LF response with Input source Z of zero, & O/P load of 10k...
    I/P Ä3dB LF roll off, @ 31Hz where Xc = 5kê
    O/P Ä3dB LF roll off, @ 29Hz where Xc = 10.9kê
    Giving Ä6dB @ 30Hz & 12dB/Octave LF cut.


Why don't U send an interesting bul?

73 De John, G8MNY @ GB7CIP


Read previous mail | Read next mail


 24.09.2024 17:24:50lGo back Go up