OpenBCM V1.08-5-g2f4a (Linux)

Packet Radio Mailbox

IZ3LSV

[San Dona' di P. JN]

 Login: GUEST





  
G8MNY  > TECH     15.05.24 10:05l 165 Lines 8249 Bytes #999 (0) @ WW
BID : 7774_GB7CIP
Read: GUEST
Subj: Simple 1kHz AF Test Osc
Path: IZ3LSV<ED1ZAC<GB7CIP
Sent: 240515/0857Z @:GB7CIP.#32.GBR.EURO #:7774 [Caterham Surrey GBR] $:7774_GB
From: G8MNY@GB7CIP.#32.GBR.EURO
To  : TECH@WW

By G8MNY                                    (Revised Nov 06)
(8 Bit ASCII graphics use code page 437 or 850, Terminal Font)
At my local club for a construction contest we made up several Velleman Signal
Generator Mk105 kits. They all worked OK, but the output shapes were very poor,
so I have had a go at re-designing mine....

THE ORIGINAL
This is a single frequency osc design using a 555 astable osc & then used
various cascaded CR filters (1 Cap combination actually shorting the 555 square
wave edges to ground!). A separately biased NPN was used as an active filter to
help the sine wave filtering & the options then linked into an output NPN
emitter follower. There were 4 shapes available all at different levels.

NEW DESIGN
I kept the 555 & set the frequency more to 1kHz (slightly dependent on battery
volts) by changing the main timing R to 22K. [N.B. square wave ratio of 1:1 for
no even harmonics needs charge R (1k+22k) to equal the discharge R (22k), which
of course it cant be!]
The large output square wave on pin 3 is attenuated 6:1 & biased up to work the
NPN at the same DC level as the other waveforms. The other 2 waveforms are self
biased from the square wave average.

 ÚÄo\oÄÂÄÄÄÂÄÄÄÄÄÄÄÂÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
 ³     ³  1K    ÚÄÄÁÄÁÄ¿             5K6        SQUARE     ³
 ³+9v  ³+  ³    ³  4 8 ³   ÚÄÄÄÄÄÄÄÄÄÂÁÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄo    ³
_³_   ===  ÃÄÄÄÄ´7 555 ³  18K       4K7       TRIANGLE   ³/ 
 Ü  25u³  22K   ³     3ÃÄÄÂÁÄÄ18KÄÂÄÄ)ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄo<Ä´BC547
 ³     ³   ÃÄÄÄÄ´6     ³ 2K2      ³  ³            SINE   ³\e
 ³     ³   ÃÄÄÂÄ´2     ³  ÃÄÄ4K7ÄÄ)ÄÄ)ÄÄÂÄ10KÄÂÄ22KÄÂÄo    ³ 10u
 ³     ³  === ³ ³  5 1 ³  ³    ÚÄÄ´  ³  ³    ===    ³      ÃÄ´ÃÄ¿
 ³     ³47n³  ³ ÀÄÄÂÄÄÂÙ  ³    ³ === ³  ³  22nÀÄÄÄÄÄ)ÄÄÄÄÄÄ´+   ³
 ³     ³   ³  ³ 10n³  ³   ³u22 ³  ³u1³  ³           ³      ³   47K<ÄÄÄ>
 ³     ³   ³  ³   === ³  ===   ³  ³  ³ ===47n   10n===    4K7  Pot   O/P
 ÀÄÄÄÄÄÁÄÄÄÁÄÄ)ÄÄÄÄÁÄÄÁÄÄÄÁÄÄÄÄ)ÄÄÁÄÄÁÄÄÁÄÄÄÄÄÄÄÄÄÄÄÁÄÄÄÄÄÄÁÄÄÄÄÁÄÄÄÄÄ>
              ÀÄÄÄÄÄÄ47KÄÄÄÄÄÄÄÙ

To get the triangle wave I used an 18K & u1, & to cancel any slight curve
charge discharge shape at 1/6 height, I added in some of the oscillator curvy
ramp that was out of phase via the 47K from pin 2. This is an unusual G8MNY
BODGE!

   Without correction        Inverted correction             Result
      .-'\ slight curve      more curvy waveform            /\
    /'    `\          /       \           _.-~\           /'  `\        /
  /'        `\_     /'         `\_      /'              /'      `\    /'
               ~-./'              ~-._/'                          `\/'

For the sine wave feed, I did the same, but with a 2K2 & u22 as an initial
filter CR to set the higher level needed for the sine wave feed to an active
butterworth 18dB/Octave filter. That used a doubling of values to give a good
filter shape. This gives a total of 24dB/Octave filtering for the sine wave on
the initial square wave harmonic levels. That is about -50dB @ 3kHz, or better
than 0.3% distortion all in, as the 3rd harmonic should be the only significant
one. Due to the hefty filtering the level is also a function of frequency!

Only 1 NPN transistor is used in this circuit now. I changed it's emitter
resistor to reduce current & the 1uF supply cap to 25uF & also the output feed
cap to 10uF for a "no droop" square wave.

Power consumption is now a lower 11mA @ 9V so a PP3 battery should last >10hrs.
The circuit will operate OK on 12V, but the frequency & levels will change!

Output level is dependent on supply, but all about 1V P-P on 9V.

IN USE
The main use is for AF work, where tones can be injected into AF stages. The 3
waveforms have different uses..

  SQUARE WAVE used with a scope to quickly determine the AF bandwidth..

   Ú._                       ________                       _.¿
   ³  ~-._        ³         ³  Very  ³        ³         _.-~  ³
   ³  Poor~³      ³         ³  flat  ³        ³        ³  Too ³      ³
   ³   LF  ³     _³         ³Responce³        ³          much ³_     ³
           ³ _.-~                    ÀÄÄÄÄÄÄÄÄÙ           LF    ~-._ ³
           À~       ______                  ,                       ~Ù
                  /~ Too  ³                 ³\.______
                 ³ little ³       ³         ³   Too  ³       ³
                     HF    \_     ³         ³  much  ³ _-----Ù
     _ Level                 ~~~~~~             HF   ³/
  0dB ³ ³100%
      ³ ³
      ³ ³
      ³ ³            S Q U A R E   W A V E   S P E C T R U M
-10dB_³ ³   33%
      ³ ³    |   20%
-20dB-³ ³    ³    ³   14%  11%  9%   8%   7%   6%   5%    5%   4%   4%   3%
      ÀÄÁÄÄÄÄÁÄÄÄÄÁÄÄÄÄÁÄÄÄÄÁÄÄÄÄÁÄÄÄÄÁÄÄÄÄÁÄÄÄÄÁÄÄÄÄÁÄÄÄÄÁÄÄÄÄÁÄÄÄÄÁÄÄÄÄÁÄ>Hz
        1k   3k   5k   7k   9k  11k  13k  15k  17k  19k  21k  23k  25k  27k

   As the bandwidth is very large, so any restriction will result in the above
   tell tail shape changes. Sharp frequency cut off always produce overshoots &
   ringing immediately after the vertical edges. An amplifier dummy load of 8ê
   in parallel with a 1uF fed with a square wave is often used to show amp
   stability into nasty loads as it brings on overshoots due to NFB delay etc.

    ï n     Ringing                                  _______
   ³ U ~ÄÄÄÄ¿               Slew OK Small           /       \
   ³        ³              ÚÄÄÄÄÄÄÄÄÄ¿             /  Slew   \           /
            ³ ï      ³               ÀÄÄÄÄÄÄÄÄÄÙ       Bad    \         /
             U u~ÄÄÄÄÙ                                Large    \_______/
 
   While poor slew rates produce different slopes (bandwidth) depending on
   levels. This is normally due to too much NFB masking a poor amp design!

   Note that the square wave spectrum is very annoying to the ear as it
   contains only non musical odd harmonics that only slightly reduce by their
   harmonic number fraction.

   TRIANGLE WAVE used with a scope to look at Amplifier crossover & peak &
   other non linearities.
                                /\
     /\ crossover             /'  `\   ideal              _/\_  peak
   /'  `\__      __/        /'      `\  straight        /~    ~\compression
           \    /         /'          `\ sides        /'        `\_    _/
            `\/'                        `\    /                    ~\/~
                                          `\/'

     /~~\  symmetrical         /~~\ asymmetrical          _/\_ asymmetrical
   /'    `\ clipping         /'    `\ clipping          /~    ~\compression
           `\      /                 `\        /      /'        `\        /
             `\__/'                    `\    /'                   `\    /'
                                         `\/'                       `\/'
             _Level
          0dB ³  ³100%
              ³  ³
              ³  ³ T R I A N G L E   W A V E   S P E C T R U M
              ³  ³
              ³  ³
        -20dB_³  ³    10%
              ³  ³     ³    4%    2%    1%    0.8%  0.6%  0.4%
              ÀÄÄÁÄÄÄÄÄÁÄÄÄÄÄÁÄÄÄÄÄÁÄÄÄÄÄÁÄÄÄÄÄÁÄÄÄÄÄÁÄÄÄÄÄÁÄÄ>Hz
                1k    3k    5k    7k    9k    11k   13k   15k

   The spectrum is like a square wave, but lower odd harmonic levels at their
   harmonic number fraction squared.

   SINE WAVE used with a scope or AF spectrum analyser (sound card) or just
   ears, to judge level of unwanted harmonic generation in a piece of AF kit.

       _                                    Level³  ³
     /~ ~\           Note the smooth         dB  ³  ³ SINE WAVE SPECTRUM
    |     |          curves of the               ³  ³
   ³       ³       ³ sine wave, with a           ³  ³  Little/no
            |     |  perfect inverted            ³  ³  harmonics
             \_ _/   image & no harmonics.       ÀÄÄÅÄÄÂÄÄÂÄÄÂÄÄÂÄÄÂÄÄÂÄÄÂ>Hz
               ~                                   1k 2k 3k 4k 5k 6k 7k 9k

OTHER OSCILLATORS
Accurate constant level variable frequency sine wave oscillators are used to
determine the true frequency response. Also undistorted sine waves are used for
true RMS power measurements on PA stages.


Also see my bul on "AF Waveform Generator", "Locking a Frequency with 555" &
"FeelTeck Dual DDS Osc FY6600-60M".


Why don't U send an interesting bul?

73 de John G8MNY @ GB7CIP


Read previous mail | Read next mail


 05.01.2025 00:29:47lGo back Go up