OpenBCM V1.08-5-g2f4a (Linux)

Packet Radio Mailbox

IZ3LSV

[San Dona' di P. JN]

 Login: GUEST





  
G8MNY  > TECH     25.03.24 09:00l 152 Lines 7393 Bytes #999 (0) @ WW
BID : 4025_GB7CIP
Read: GUEST
Subj: Reactance Controlled SM PSU
Path: IZ3LSV<I0OJJ<GB7CIP
Sent: 240325/0755Z @:GB7CIP.#32.GBR.EURO #:4025 [Caterham Surrey GBR] $:4025_GB
From: G8MNY@GB7CIP.#32.GBR.EURO
To  : TECH@WW

By G8MNY                                    (Updated Sep 13)
(8 Bit ASCII graphics use code page 437 or 850, Terminal Font)

I came across a different type of SMPSU 5V 40A, 12V 10A, 12A 10A & 24V 1A. I
think it was from a mini mainframe computer. It looked quite conventional at
first sight, until I saw that it had isolated independent output regulation per
rail! How did they do that?

THE MAINS BIT
This was push pull @ 76kHz to a large ferrite transformer (600W), it had pulse
width control that seemed to just control the maximum overall power available.
     _
   /~ ~\                 ÄÄÄÄÄ      ±±HF±±           Û Isolated
  | 50Hz|     |          340V DC    ±±±±±±           Ü HF square
         \_ _/           ÄÄÄÄÄ                       Ü waves Ú¿Ú¿
           ~       ________________________ÚÄÄÄÄÄÄÄ¿          ÀÙÀÙ
         ______   ³    ______   ________   ³FERRITEÃÄ
 LÄFuseÄ´      ÃÂTRAC´BRIDGEÃÄ´INVERTERÃÄÄ´       ÃÄ isolated
MAINS   ³FILTER³ÀÄRÄÄÙ³& CAPS³ ³ OUTPUTS³  ³OUTPUT ÃÄ secondary
 NÄÄÄÄÄÄ´______ÃÄÄÄÄÄÄ´______ÃÄ´________ÃÄÄ´TRANS- ÃÄ outputs
 EÄÄÄÄÄÄÄÄÄ´           340VDC ÚÄÄÄÄÄÁÄÄÄÄ¿ ³FORMER ÃÄ
          ÄÁÄ                 ³PW controlÃÄ´_______ÃÄ
                              ³  TDA1060 ³    _³_
                              ÀÄÄÄÄÄÄÄÄÄÄÙ
The main soothing caps (2x 1000uF & option for more off board!) are charged up
via the series mains R, & when the output starts up an isolated winding is used
to drive the mains live triac on, to short out the series mains R.

SECONDARY PCBs
There is one of these per output rail, a semi-linear 24V 1A PCB & 3 controlled
reactance regulators for 5-7V @ 40A 2x 10-19V @ 10A, all isolated independent
of each other, their circuits are very strange...

>ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄÄÂÄÄÄÄÄÂÄÄÂÄÄÂÄÄ>+12V
               _³_        _³_    ³  ³  ³    10A
76kHz AC     D2/_\      D5\_/   === ³  ³
50V P-P HF      ³  ::::    ³ 470u³  ³  ³
Square wave     ÃÄÄ()))ÄÄÄÄ)ÄÄÄÄÄ´  ³  ³1000u
Transformer    _³_   L1    ³     ³  ³ ===
Secondary    D1\_/        22R    ³  ³  ³   D1 & 2 HF 30A types on heatsink.
          ù     ³         1W     ³  ³  ³   D3 4 & 5 HF 1A types.
>ÂÄÄÂÄÄÄÄÄ()))ÄÄÙ          ³     ³  ³  ³
_³_ ³     :::: T1          ³     ³  ³  ³  T1 is a 1:1 ferrite ring transformer
\_/ ÀÄ´>ÃÄ()))ÄÄÄÄÄÄÄÄÄÄÄÄÄ´     ³  ³  ³  with the lower winding being light
 ³D4  D3  ù               47R    ³  ³  ³  current. the phase of the windings  
 ³                       ³/      ³  ³  ³  is important.
 ³           Control>ÂÄÄÄ´TIP    ³ 220 ³  The top coil is rated about 1/3 of
 ³                   ³   ³\e NPN ³  1W ³  the output current.
 ÃÄ220RÄÂÄÄÄÂÄ>Op    ôÃÄÄÂÁÄÄÄÄÄ´  ³  ³  L1 is another ring ferrite about 2x
 ³+    _³_ === amps  À100RÙ      ³  ³  ³  the volume of T1 with the winding
===    /_\' ³4u7              0.01R ³  ³  rated at the full output current.
 ³4u7   ³9V ³               shunt³  ³  ³
 ÀÄÄÄÄÄÄÁÄÄÄÁÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÁÄÄÁÄÄÁÄÄ>-
Ring transformers with no air gap are easily saturated with DC & then there
inductance drops to almost zero!

The negative input swings go through T1 & D1 & via L1 to the output. This tends
to saturate T1 as current flows into L1. On reversal L1 discharges the stored
energy via D2 to the output capacitors, increasing the output voltage. Applying
load current increases the saturation of T1 & increases the drive into L1.

Positive input swings via D3 & T1s lower control winding & 47R are applied to
the TIP transistor's collector. So turning on the NPN will produce some current
in T1 in opposition to the saturation, e.g. de-saturating it. This allows far
more voltage to appear across T1 & thus there is less output.

This means that 2W of control power controls 200W of DC output & all done with
ferrite rings & diodes @ 76kHz.

OP AMP CONTROL
This is straight forward...

   _+Output
  ³  Volts 5/12V
  ³
Preset
  5K     Voltage Control    +9V             Current Limiter
  ³    ÚÄÄÄÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
 3K3   1K          ³                                         Preset
  ³    ³         ³\³                TIP             /³          5K
  ÃÄÄÄÄ)ÄÄ1KÄÄÄÄÄ´+ \               NPN           / +ÃÄ1KÄÄ¿    ³
  ³    ³       LF³358>ÄÄÄÄÂÄ1KÄÂÄ´>ÃÄÁÄ´<ÃÄ1KÄÂÄÄ<358³     ³    1K
 3K3   ÃÄÄ1KÄÄÂÄÄ´- /     ³    ³              ³   \ -ÃÄÄÂÄÄ)Ä1KÄ´
  ³   _³_    === ³/³      ³ u1 ³              ³     \³ === ³    ³
  ³   /_\'  u1ÀÄÄÄÄ)Ä560RÄÁÄ´ÃÄÙ              ÀÄ560RÄÄÄÄÙu1³  150R  Current
  ³2.4V³5V         ³                                       ³    ÀÄÄ>Shunt -
  ÁÄÄÄÄÁÄÄÄÄÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄ>0V

Voltage control is done with a sample of the output compared to a 5/2.4V ref
zener. The op amp is slowed down with CR output to -ve input to avoid HF QRM &
loop instability, but some speed up is applied to the output feed drive T1 base
Note that op amp high, means output low!

Current limiting is almost a mirror image using the 0V input feature of the
LF358 op amp. The more negative shunt input is taken to the negative op amp
into to produce a positive output to stop the over current. The limit value is
set up by applying current to the series 150R to give a small offset voltage,
that equals shunts voltage drop at the limit current.

For diagram simplicity remote sense options are not shown, but they use 100R
to extra terminals for remote sense leads, & these are connected to the
relevant voltage reference points of the circuit not the shown local output
terminals.

On the 5V PSU the current diode D2 is doubled up & on a larger heatsink. As 5V
is used for logic chips, there is also an overvoltage SCR crowbar!

SEMI LINEAR REGULATOR
It used a swing choke L (ferrite pot core) & RF efficiency diode D2 in the
input. This reduces the voltage & doubles the current available. 

           D1       L      28-36V     _____
-[R]ÄÄÄÂÄÄÄ´>ÃÄÄÂÄÄ()))ÄÄÂÄÄÂÄÄÄÄÂÄÄÄ´78uicÃÄÂÄÄÄÂÄÄ>+24V
       ³        ³  ::::  ³  ³    ³   ÀÄÂÄÄÂÙ ³   ³
       À´ÃÄ100RÄ´       +³  ³    1K    ³  ³ 18K  ³+
 90V        ÚÄÄÄ´       === ³   _³_    ³  ³  ³  === 47u
 P-P       === _³_   100u³  ³   /_\'   ³  ÀÄÄ´   ³
 AC         ³  /_\    50V³   \³__³ Z1  ³    4K7  ³
78kHz     100R  ³ D2     ³  e/³   33V  ³     ³   ³
            ³   ³        ³  ³ T1       ³     ³   ³
 ÄÄÄÄÄÄÄÄÄÄÄÁÄÄÄÁÄÄÄÄÄÄÄÄÁÄÄÁÄÄÄÄÄÄÄÄÄÄÁÄÄÄÄÄÁÄÄÄÁÄÄÄ>0
                            SHUNT

Due to the off load peak voltage of the choke input a shunt regulator Z1 & T1
adds a load when it is over 33V. The adjustable 78 regulator has inbuilt
current limiting @ 1A.

EFFICIENCY
Although this SMPSU seem very complex, it all runs fairly cool, so I guess it
is quite efficient really.

MY USE
As the PSU may be HF noisy, I do not intend to use it for ham radio work, but @
28V for battery charging of 4 large 6V 200AH bus batteries. So I have up-rated
the two 10A 12V PSUs to 15A @ 13.8V & added a heavy relay to join them together
powered from the 24V linear PSU (now has a supply [R] to reduce heat), so there
is no battery load at all on no mains. I added LEDs & driver transistors driven
from the current IC to to indicate current limit.

The 40A 5V PSU has been set to 6.75V for boosting a 6V battery if needed.

In this circuit you cannot parallel the 12V outputs, as the 22R will burn out!
External steering diodes, must be used.
    

Why don't U send an interesting bul?

73 de John G8MNY @ GB7CIP


Read previous mail | Read next mail


 05.11.2024 07:55:01lGo back Go up